Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401033, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775406

RESUMO

Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln = Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).

2.
Nat Chem ; 15(5): 722-728, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36973433

RESUMO

The actinides, from californium to nobelium (Z = 98-102), are known to have an accessible +2 oxidation state. Understanding the origin of this chemical behaviour requires characterizing CfII materials, but investigations are hampered by the fact that they have remained difficult to isolate. This partly arises from the intrinsic challenges of manipulating this unstable element, as well as a lack of suitable reductants that do not reduce CfIII to Cf°. Here we show that a CfII crown-ether complex, Cf(18-crown-6)I2, can be prepared using an Al/Hg amalgam as a reductant. Spectroscopic evidence shows that CfIII can be quantitatively reduced to CfII, and rapid radiolytic re-oxidation in solution yields co-crystallized mixtures of CfII and CfIII complexes without the Al/Hg amalgam. Quantum-chemical calculations show that the Cf‒ligand interactions are highly ionic and that 5f/6d mixing is absent, resulting in weak 5f→5f transitions and an absorption spectrum dominated by 5f→6d transitions.

3.
Chem Commun (Camb) ; 58(84): 11791-11794, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36193661

RESUMO

The aqueous reaction of sodium pyrithione, (Na)mpo, with 243AmCl3·nH2O yields a dimerized complex, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O. This compound is compared with isostructural lanthanide pyrithionates, where dimerization across the 4f-block is observed to be dependent upon the size of the cation. Unlike in most reported Am(III) UV-visible absorption spectra, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O shows significant splitting in the fingerprint excitations. This is attributed to a unique ligand-field environment, where the Am-mpo bonds possess different bonding compared to the Nd(III) analog because of increasing covalent interactions.

4.
Inorg Chem ; 60(20): 15196-15207, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34590830

RESUMO

Three samarium(II) crown ether complexes, [Sm(15-crown-5)2]I2 (1), [Sm(15-crown-5)2]I2·CH3CN (2), and [Sm(benzo-15-crown-5)2]I2 (3), have been prepared via the reaction of SmI2 with the corresponding crown ether in either THF or acetonitrile in good to moderate yields. The compounds have been characterized by single crystal X-ray diffraction and a variety of spectroscopic techniques. In all cases, the Sm(II) centers are sandwiched between two crown ether molecules and are bound by the five etheric oxygen atoms from each crown ether to yield 10-coordinate environments. Despite the higher symmetry crystal class of 1 (R3c), the samarium center resides on a general position, whereas in 2 and 3 (both in P21/c) the metal centers lie upon inversion centers. Moreover, the complexes in 2 and 3 are approximated well by D5d symmetry. The molecule in 1, however, is distorted from idealized D5d symmetry, and the crown ethers are more puckered than observed in 2 and 3. All three complexes luminesce in the NIR at low temperatures. However, the nature of the luminescence differs between the three compounds. 1 exhibits broadband photoluminescence at 20 °C but at low temperatures transitions to narrow peaks. 2 only exhibits nonradiative decay at 20 °C and at low temperatures retains a mixture of broadband and fine transitions. Finally, 3 displays broadband luminescence regardless of temperature. Spin-orbit (SO) CASSCF calculations reveal that the outer-sphere iodide anions influence whether broadband luminescence from 5d → 4f or fine 4f → 4f transitions occur through the alteration of symmetry around the metal centers and the nature of the excited states as a function of temperature.

5.
J Am Chem Soc ; 143(19): 7326-7341, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33974429

RESUMO

Unveiling the nature and the distribution of surface sites in heterogeneous catalysts, and for the Phillips catalyst (CrO3/SiO2) in particular, is still a grand challenge despite more than 60 years of research. Commonly used references in Cr K-edge XANES spectral analysis rely on bulk materials (Cr-foil, Cr2O3) or molecules (CrCl3) that significantly differ from actual surface sites. In this work, we built a library of Cr K-edge XANES spectra for a series of tailored molecular Cr complexes, varying in oxidation state, local coordination environment, and ligand strength. Quantitative analysis of the pre-edge region revealed the origin of the pre-edge shape and intensity distribution. In particular, the characteristic pre-edge splitting observed for Cr(III) and Cr(IV) molecular complexes is directly related to the electronic exchange interactions in the frontier orbitals (spin-up and -down transitions). The series of experimental references was extended by theoretical spectra for potential active site structures and used for training the Extra Trees machine learning algorithm. The most informative features of the spectra (descriptors) were selected for the prediction of Cr oxidation states, mean interatomic distances in the first coordination sphere, and type of ligands. This set of descriptors was applied to uncover the site distribution in the Phillips catalyst at three different stages of the process. The freshly calcined catalyst consists of mainly Cr(VI) sites. The CO-exposed catalyst contains mainly Cr(II) silicates with a minor fraction of Cr(III) sites. The Phillips catalyst exposed to ethylene contains mainly highly coordinated Cr(III) silicates along with unreduced Cr(VI) sites.

6.
Inorg Chem ; 60(11): 7815-7826, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33990139

RESUMO

Lanthanides such as europium with more accessible divalent states are useful for studying redox stability afforded by macrocyclic organic ligands. Substituted cryptands, such as 2.2.2B cryptand, that increase the oxidative stability of divalent europium also provide coordination environments that support synthetic alterations of Eu(II) cryptate complexes. Two single crystal structures were obtained containing nine-coordinate Eu(II) 2.2.2B cryptate complexes that differ by a single coordination site, the occupation of which is dictated by changes in reaction conditions. A crystal structure containing a [Eu(2.2.2B)Cl]+ complex is obtained from a methanol-THF solvent mixture, while a methanol-acetonitrile solvent mixture affords a [Eu(2.2.2B)(CH3OH)]2+ complex. While both crystals exhibit the typical blue emission observed in most Eu(II) containing compounds as a result of 4f65d1 to 4f7 transitions, computational results show that the substitution of a Cl- anion in the place of a methanol molecule causes mixing of the 5d excited states in the Eu(II) 2.2.2B cryptate complex. Additionally, magnetism studies reveal the identity of the capping ligand in the Eu(II) 2.2.2B cryptate complex may also lead to exchange between Eu(II) metal centers facilitated by π-stacking interactions within the structure, slightly altering the anticipated magnetic moment. The synthetic control present in these systems makes them interesting candidates for studying less stable divalent lanthanides and the effects of precise modifications of the electronic structures of low valent lanthanide elements.

7.
J Phys Chem A ; 124(1): 152-164, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31769978

RESUMO

The electronic structure of Eu2+ compounds results from a complex combination of strongly correlated electrons and relativistic effects as well as weak ligand-field interaction. There is tremendous interest in calculating the electronic structure as nowadays the Eu2+ ion is becoming more and more crucial, for instance, in lighting technologies. Recently, interest in semiempirical methods to qualitatively evaluate the electronic structure and to model the optical spectra has gained popularity, although the theoretical methods strongly rely upon empirical inputs, hindering their prediction capabilities. Besides, ab initio multireference models are computationally heavy and demand very elaborative theoretical background. Herein, application of the ligand-field density functional theory (LFDFT) method that is recently available in the Amsterdam Modeling Suite is shown: (i) to elucidate the electronic structure properties on the basis of the multiplet energy levels of Eu configurations 4f7 and 4f65d1 and (ii) to model the optical spectra quite accurately if compared to the conventional time-dependent density functional theory tool. We present a theoretical study of the molecular Eu(η9-C9H9)2 complex and its underlying photoluminescence properties with respect to the Eu 4f-5d electron transitions. We model the excitation and emission spectra with good agreement with the experiments, opening up the possibility of modeling lanthanides in complex environment like nanomaterials by means of LFDFT at much-reduced computational resources and cost.

8.
Phys Chem Chem Phys ; 21(15): 7789-7801, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30932120

RESUMO

While the electronic structure calculation for actinide materials, using ligand-field phenomenology in conjunction with density functional theory (LFDFT) treating configurations with single or two open-shells 5f and 6d electrons, is well established and currently practiced, the consideration of the three open-shells electron configurations for LFDFT treatment is a challenging task addressed in the present work. Herein, we report the first-principles method, developed for the first time on the basis of LFDFT, to evaluate the uranium L3-edge X-ray absorption near-edge structure (XANES), which requires non-equivalent active electrons within the 2p, 5f and 6d orbitals of the uranium ion. The theoretical results, when compared with the experimental XANES data measured from uranium dioxide fresh fuel pellets and rector-exposed spent fuel materials, show good agreement with the experimental findings elucidating the local oxidation in the spent fuel materials. This report is relevant for the commonly used L-edge spectroscopy of actinide isotopes and important for understanding the structural, optical and electronic properties of actinide-based materials.

9.
Chem Commun (Camb) ; 55(20): 2988-2991, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30785135

RESUMO

Affordable calculations of X-ray magnetic circular dichroism and X-ray linear dichroism spectra of lanthanide ions purely based on structural input are difficult to achieve. Here we report on the successful application of ligand-field density-functional theory to obtain an exquisite reproduction of experimental spectra. As a testbed we use TbPc2 single-molecule magnets on a flat substrate.

10.
J Chem Phys ; 149(5): 054104, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089372

RESUMO

This presentation reports the theoretical study of 3d core-electron excitation in lanthanide compounds in terms of electronic structure effects and optical properties. The calculations are done at the Density-Functional Theory (DFT) level complemented with an effective Hamiltonian based on ligand-field theory. The strategy consists of obtaining from DFT a totally symmetric density, where an active subspace is set up that forms the basis of the fivefold 3d and sevenfold 4f atomic orbitals of the lanthanide ion. This active subspace is defined with the fractional occupation of electrons, which represents open-shell species with the composite configuration 3d94fn+1. Based on the ligand-field analysis of the DFT results, the multiplet energies and ligand-field effects associated with the configuration 3d94fn+1 are evaluated; and the X-ray absorption spectra are simulated in terms of the intra-atomic 4fn → 3d94fn+1 electron transitions within the electric-dipole approximation. Examples for application are proposed taking into consideration the isolated trivalent lanthanides ions and compounds Cs2NaPrX6, with X = F, Cl, and Br. The results are compared with available experimental data, where a good agreement is qualitatively achieved. Also, the screening of the inter-electron repulsion and spin-orbit coupling interaction is numerically obtained that allows one to establish a fully non-empirical treatment of the 3d core-electron excitation, which can be valuable in the characterization and modeling of the spectral profiles of lanthanide M4,5-edge X-ray absorption spectroscopy. The enclosed theoretical model, which is being implemented in the Amsterdam Density Functional (ADF) suite of programs, is computationally economic and can be applied to any lanthanide system without limitations in terms of the size of the matrix elements of the effective Hamiltonian or the coordination symmetry of the lanthanide center.

11.
Phys Chem Chem Phys ; 19(48): 32481-32491, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29188263

RESUMO

Methodological concepts are reported for the calculation, without empirical parameters, of multiplet energy levels and ligand-field effects associated with three-open-shell 4f135fn6d1 electron configurations, and for the modeling of X-ray absorption spectra in relation to intra-atomic 5fn → 4f135fn6d1 electron transitions. A density functional theory (DFT) method is used for the determination of the electronic structure. An effective ligand-field Hamiltonian is also used to incorporate many body effects and corrections via the configuration interaction algorithm within the active space of Kohn-Sham orbitals with dominant actinide 4f, 5f and 6d characters. The theoretical method ensures a parameter-free ligand-field model, which will be implemented in the Amsterdam density functional (ADF) program package as part of the available and automated ligand-field density functional theory (LFDFT) routine. The theoretical method is illustrated with examples for applications: U4+ in the free ion and U4+ in bulk UO2 by means of the molecular (UO8)12- cluster. The DFT calculations are performed at different levels of the DFT functional, from which the LFDFT parameters such as Slater-Condon integrals, spin-orbit coupling constants and ligand-field potential (represented within the Wybourne formalism) are emulated. The comparison with available experimental data is good. Therefore, a non-empirical ligand-field treatment of the 4f135fn6d1 configuration is established illustrating the spectroscopic details of the 4f core-electron excitation, which can be valuable for further understanding and prediction of the spectral profiles of actinide N6,7-edge X-ray absorption spectroscopy.

12.
J Mol Model ; 23(8): 243, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748282

RESUMO

The ligand field density functional theory (LFDFT) algorithm is extended to treat the electronic structure and properties of systems with three-open-shell electron configurations, exemplified in this work by the calculation of the core and semi-core 1s, 2s, and 3s one-electron excitations in compounds containing transition metal ions. The work presents a model to non-empirically resolve the multiplet energy levels arising from the three-open-shell systems of non-equivalent ns, 3d, and 4p electrons and to calculate the oscillator strengths corresponding to the electric-dipole 3d m  â†’ ns 13d m 4p 1 transitions, with n = 1, 2, 3 and m = 0, 1, 2, …, 10 involved in the s electron excitation process. Using the concept of ligand field, the Slater-Condon integrals, the spin-orbit coupling constants, and the parameters of the ligand field potential are determined from density functional theory (DFT). Therefore, a theoretical procedure using LFDFT is established illustrating the spectroscopic details at the atomic scale that can be valuable in the analysis and characterization of the electronic spectra obtained from X-ray absorption fine structure or electron energy loss spectroscopies.

13.
Phys Chem Chem Phys ; 19(31): 20919-20929, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745769

RESUMO

Methodological advents for the calculation of the multiplet energy levels arising from multiple-open-shell 2p53dn+1 electron configurations, with n = 0, 1, 2,… and 9, are presented. We use the Ligand-Field Density Functional Theory (LFDFT) program, which has been recently implemented in the Amsterdam Density Functional (ADF) program package. The methodology consists of calculating the electronic structure of a central metal ion together with its ligand coordination by means of the Density Functional Theory code. Besides, the core-hole effects are treated by incorporating many body effects and corrections via the configuration interaction algorithm within the active space of Kohn-Sham orbitals with dominant 2p and 3d characters of the transition metal ions, using an effective ligand-field Hamiltonian. The Slater-Condon integrals (F2(3d,3d), F4(3d,3d), G1(2p,3d), G3(2p,3d) and F2(2p,3d)), spin-orbit coupling constants (ζ2p and ζ3d) and parameters of the ligand-field potential (represented within the Wybourne formalism) are therefore determined giving rise to the multiplet structures of systems with 3dn and 2p53dn+1 configurations. The oscillator strengths of the electric-dipole allowed 3dn → 2p53dn+1 transitions are also calculated allowing the theoretical simulation of the absorption spectra of the 2p core-electron excitation. This methodology is applied to transition metal ions in the series Sc2+, Ti2+,…, Ni2+ and Cu2+ but also to selective compounds, namely SrTiO3 and MnF2. The comparison with available experimental data is good. Therefore, a non-empirical ligand-field treatment of the 2p53dn+1 configurations is established and available in the ADF program package illustrating the spectroscopic details of the 2p core-electron excitation that can be valuable in the further understanding and interpretation of the transition metal L2,3-edge X-ray absorption spectra.

14.
Phys Chem Chem Phys ; 18(28): 19020-31, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27356168

RESUMO

Ligand field density functional theory (LFDFT) calculations have been used to model the uranium M4,5, N4,5 and O4,5-edge X-ray absorption near edge structure (XANES) in UO2, characterized by the promotion of one electron from the core and the semi-core 3d, 4d and 5d orbitals of U(4+) to the valence 5f. The model describes the procedure to resolve non-empirically the multiplet energy levels originating from the two-open-shell system with d and f electrons and to calculate the oscillator strengths corresponding to the dipole allowed d(10)f(2)→ d(9)f(3) transitions appropriate to represent the d electron excitation process. In the first step, the energy and UO2 unit-cell volume corresponding to the minimum structures are determined using the Hubbard model (DFT+U) approach. The model of the optical properties due to the uranium nd(10)5f(2)→nd(9)5f(3) transitions, with n = 3, 4 and 5, has been tackled by means of electronic structure calculations based on the ligand field concept emulating the Slater-Condon integrals, the spin-orbit coupling constants and the parameters of the ligand field potential needed by the ligand field Hamiltonian from Density Functional Theory. A deep-rooted theoretical procedure using the LFDFT approach has been established for actinide-bearing systems that can be valuable to compute targeted results, such as spectroscopic details at the electronic scale. As a case study, uranium dioxide has been considered because it is a nuclear fuel material, and both atomic and electronic structure calculations are indispensable for a deeper understanding of irradiation driven microstructural changes occurring in this material.

15.
Inorg Chem ; 54(17): 8319-26, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26270436

RESUMO

The most efficient way to provide domestic lighting nowadays is by light-emitting diodes (LEDs) technology combined with phosphors shifting the blue and UV emission toward a desirable sunlight spectrum. A route in the quest for warm-white light goes toward the discovery and tuning of the lanthanide-based phosphors, a difficult task, in experimental and technical respects. A proper theoretical approach, which is also complicated at the conceptual level and in computing efforts, is however a profitable complement, offering valuable structure-property rationale as a guideline in the search of the best materials. The Eu(2+)-based systems are the prototypes for ideal phosphors, exhibiting a wide range of visible light emission. Using the ligand field concepts in conjunction with density functional theory (DFT), conducted in nonroutine manner, we develop a nonempirical procedure to investigate the 4f(7)-4f(6)5d(1) luminescence of Eu(2+) in the environment of arbitrary ligands, applied here on the CsMgBr3:Eu(2+)-doped material. Providing a salient methodology for the extraction of the relevant ligand field and related parameters from DFT calculations and encompassing the bottleneck of handling large matrices in a model Hamiltonian based on the whole set of 33,462 states, we obtained an excellent match with the experimental spectrum, from first-principles, without any fit or adjustment. This proves that the ligand field density functional theory methodology can be used in the assessment of new materials and rational property design.

16.
Phys Chem Chem Phys ; 17(28): 18547-57, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26112997

RESUMO

Ligand field density functional theory (LFDFT) is a methodology consisting of non-standard handling of DFT calculations and post-computation analysis, emulating the ligand field parameters in a non-empirical way. Recently, the procedure was extended for two-open-shell systems, with relevance for inter-shell transitions in lanthanides, of utmost importance in understanding the optical and magnetic properties of rare-earth materials. Here, we expand the model to the calculation of intensities of f → d transitions, enabling the simulation of spectral profiles. We focus on Eu(2+)-based systems: this lanthanide ion undergoes many dipole-allowed transitions from the initial 4f(7)((8)S7/2) state to the final 4f(6)5d(1) ones, considering the free ion and doped materials. The relativistic calculations showed a good agreement with experimental data for a gaseous Eu(2+) ion, producing reliable Slater-Condon and spin-orbit coupling parameters. The Eu(2+) ion-doped fluorite-type lattices, CaF2:Eu(2+) and SrCl2:Eu(2+), in sites with octahedral symmetry, are studied in detail. The related Slater-Condon and spin-orbit coupling parameters from the doped materials are compared to those for the free ion, revealing small changes for the 4f shell side and relatively important shifts for those associated with the 5d shell. The ligand field scheme, in Wybourne parameterization, shows a good agreement with the phenomenological interpretation of the experiment. The non-empirical computed parameters are used to calculate the energy and intensity of the 4f(7)-4f(6)5d(1) transitions, rendering a realistic convoluted spectrum.

17.
Inorg Chem ; 54(11): 5504-11, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978501

RESUMO

The flux growth of uranium(IV) oxides presents several challenges, and to the best of our knowledge, only one example has ever been reported. We succeeded in growing two new reduced uranium silicates A2USi6O15 (A = K, Rb) under flux growth conditions in sealed copper tubes. The compounds crystallize in a new structure type with space group C2/c and lattice parameters a = 24.2554(8) Å, b = 7.0916(2) Å, c = 17.0588(6) Å, ß = 97.0860(6) ° (K) and a = 24.3902(8) Å, b = 7.1650(2) Å, c = 17.2715(6) Å, ß = 96.8600(6) ° (Rb). A2USi6O15 (A = K, Rb) are isocompositional to a previously reported Cs2USi6O15, and the two structures are compared. K2USi6O15 undergoes an interesting crystal-to-crystal structural phase transition at T ≈ 225 K to a triclinic structure, which is accompanied by an intense color change. The magnetic properties of A2USi6O15 (A = K, Rb, Cs) are reported and differ from the magnetism observed in other U(4+) compounds. Calculations are performed on the (UO6)(-8) clusters of K2USi6O15 to study the cause of these unique magnetic properties.

18.
Phys Chem Chem Phys ; 17(14): 9116-25, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25759864

RESUMO

We present a theoretical work detailing the electronic structure and the optical properties of (PrF8)(5-) embedded in LiYF4, complementing the insight with data that are not available by experimental line. The local distortions due to the embedding of the lanthanide ion in the sites occupied in the periodic lattice by smaller yttrium centres, not detectable in regular X-ray analyses, are reproduced with the help of geometry optimization. Then, based on the local coordination environment, the relation structure-optical properties is constructed by Density Functional Theory computations in conjunction with the ligand field theory analyses (LFDFT) determining the [Xe]4f(2)→ [Xe]4f(1)5d(1) transitions. In previous instances we analysed rather symmetric systems, here facing the complexity of low symmetry cases, treated in the Wybourne ligand field parameterization and in the Angular Overlap Model (AOM) frame. A very important improvement at the AOM level is the consideration of the f-d mixing that brings coupling term of odd-even nature, essential for the realistic description of the asymmetric coordination centres. Furthermore, we introduce now a principle for modelling the emission intensity. The results are in agreement with available experimental findings. The relevance of the modelling has a practical face in the rational design of optimal luminescent materials needed in domestic lightening and also an academic side, revisiting with modern computational tools areas incompletely explored by the standard ligand field theories.

19.
Phys Chem Chem Phys ; 16(28): 14625-34, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24855637

RESUMO

We deal with the computational determination of the electronic structure and properties of lanthanide ions in complexes and extended structures having open-shell f and d configurations. Particularly, we present conceptual and methodological issues based on Density Functional Theory (DFT) enabling the reliable calculation and description of the f → d transitions in lanthanide doped phosphors. We consider here the optical properties of the Pr(3+) ion embedded into various solid state fluoride host lattices, for the prospection and understanding of the so-called quantum cutting process, being important in the further quest of warm-white light source in light emitting diodes (LED). We use the conceptual formulation of the revisited ligand field (LF) theory, fully compatibilized with the quantum chemistry tools: LFDFT. We present methodological advances for the calculations of the Slater-Condon parameters, the ligand field interaction and the spin-orbit coupling constants, important in the non-empirical parameterization of the effective Hamiltonian adjusted from the ligand field theory. The model shows simple procedure using less sophisticated computational tools, which is intended to contribute to the design of modern phosphors and to help to complement the understanding of the 4f(n) → 4f(n-1)5d(1) transitions in any lanthanide system.

20.
Phys Chem Chem Phys ; 16(23): 11337-48, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24789320

RESUMO

Considering the DySc2N@C80 system as a prototype for Single Ion Magnets (SIMs) based on endohedral fullerenes, we present methodological advances and state-of-the art computations analysing the electronic structure and its relationship with the magnetic properties due to the Dy(III) ion. The results of the quantum chemical calculations are quantitatively decrypted in the framework of ligand field (LF) theory, extracting the full parametric sets and interpreting in heuristic key the outcome. An important result is the characterization of the magnetic anisotropy in the ground and excited states, drawing the polar maps of the state-specific magnetization functions that offer a clear visual image of the easy axes and account for the pattern of response to perturbations by the magnetic field applied from different space directions. The state-specific magnetization functions are derivatives with respect to the magnetic field, taken for a given eigenvalue of the computed spectrum. The methodology is based on the exploitation of the data from the black box of the ab initio spin-orbit (SO) calculations. The ground state is characterized by the Jz = ±15/2 quantum numbers with easy axis along the Dy-N bond. The implemented dependence on the magnetic field allowed the first-principles simulation of the magnetic properties. The computational approach to the properties of endohedral fullerenes is an important goal, helping to complement the scarcity of the experimental data on such systems, determined by the limited amount of samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...